LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.C.A. DEGREE EXAMINATION – COMP. APPLICATION
FIRST SEMESTER – APRIL 2014
MT 1103 - MATHEMATICS FOR COMPUTER APPLICATION
Date : 28/03/2014 Dept. No. Max. : 100 Marks Time : 09:00-12:00 Max. : 100 Marks Max. : 100 Marks
Part A
Answer ALL questions: $(10 \ge 20)$
 If A be any matrix, then prove that AA' are symmetric matix. Prove that cos h² x - sin h²x = 1. If 1, 2, 3, 6 are the roots of the equation x⁴ - 12x³ + 47x² - 72x + 36 = 0, find an equation whose roots are 1, ¹/₂, ¹/₃, ¹/₆. Find the first order partial derivatives for z = x² + y² - 3xy. Integrate x²(1 - x)² with respect to x. State any two properties of definite integral. Solve 4p² - 8p + 3 = 0. Find the general solution of Clairaut's equation y = px + ap⁻¹. State the Trapezoidal rule. Write Simpson's ¹/₂ rule.
Part BAnswer any FIVE questions:(5 x 8 = 40)11. Find the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{pmatrix}$.12. Prove that $\frac{\sin 7\theta}{\sin \theta} = 7 - 56 \sin^2 \theta + 112 \sin^4 \theta - 64 \sin^6 \theta$.13. Solve $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$.14. If $u = \tan^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin u \cos u$.15. Integrate $\frac{x^{24}}{x^{10}+1}$ with respect to x.16. Evaluate the double integral $\iint_{0}^{1} (4 - x^2 - y^2) dx dy$ if the region R is bounded by the straight lines
$x = 0, x = 1, y = 0, and y = \frac{3}{2}$.
17. Solve the equation $(D^2 + 4D + 5)y = e^{2x} + 3$.
18. Solve $x = y + a \log p$.
Part C

Answer any TWO questions: (2 x 20 = 40) 19. Verify Cayley – Hamilton theorem for $A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & 7 \end{pmatrix}$. Hence find its inverse. 20. (a) Express $\cos^5 \theta \sin^3 \theta$ in terms of sines of multiples of θ . (b) Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at the points $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. (10+10) 21. Solve $x^6 + 2x^5 + 2x^4 - 2x^2 - 2x - 1 = 0$. 22. (a) Solve the equation $\left(D^2 + 5D + 4\right)y = x^2 + 7x + 9$.

(b) Prove that
$$\int_{0}^{\pi/4} \log(1 + \tan\theta) d\theta = \frac{\pi}{8} \log 2.$$
 (12+8)